Reconstruction anabélienne du squelette des courbes analytiques

نویسندگان

چکیده

This work brings to light some anabelian behaviours of analytic curves in the context Berkovich geometry. We show that knowledge tempered fundamental group called analytically determines their skeletons as graphs. The famous Drinfeld half-plane is an example such a curve. space, introduced by André, enabled Mochizuki prove first result geometry, dealing with analytifications hyperbolic over ℚ ¯ p . To end, develops language semi-graphs anabelioids and temperoids. article consists associating semi-graph curve equipped minimal triangulation adapting results order recover skeleton. novelty here we are interested not supposed anymore be algebraic nature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithmique des courbes algébriques pour la cryptologie

In this memoir, we present various works on the theme of algorithms for algebraic curveswith a view towards cryptology. We describe algorithms for computing discrete logarithms,which is a problem whose difficulty is the key to the security of curve-based cryptosystems.A first class of algorithms contains «index-calculus»-like techniques ; a second class containsmethods relying o...

متن کامل

La Limite des Theories de Courbes Generiques

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Fourier

سال: 2023

ISSN: ['0373-0956', '1777-5310']

DOI: https://doi.org/10.5802/aif.3548